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ABSTRACT

Fiber reinforced composite (FRC) materials are used extensively because of
their favorable physico-chemical properties and high strength-to-weight ratio,
The use of composites in Army vehicles as a means of decreasing weight and
enhancing survivability, without reducing personnel safety, has been under
study for some time. Although FRC materials are very attractive in terms of
their physico-chemical properties, concern for possible fire hazards is
understandable, as organic polymers are a major constituent of the materials.

This report presents flammability evaluation results for three FRC
materials (MTL #6 to #7). In this evaluation, the latest technology developed
at Factory Mutual Research Corporation (FMRC) was used.

In comparison to ordinary combustibles, such as cellulosics and most non-
fire retarded plastics, the three FRC materials have higher resistance to
ignition and flame propagation. In comparison to the FRC materials (MTL #1 to
#5) investigated in the previous study for the Army Materials Technology Lab,
the three FRC materials were found to ignite more easily, and flame propagated
beyond the ignition zone. Also, these three materials generated significantly
higher amounts of material vapors, CO, smoke and heat than the materials
examined earlier (MTL #1 to #5). Thus passive fire protection is required for
these materials. This protection can be provided by surface coatings or by
surface lamination using highly fire resistant FRC materials such as the
fiberglass phenolic examined in the previous study.

The Halon 1301 flame extinction data for the samples were found to be
consistent with the design of the current suppression system for the crew
compartment of Army combat vehicles.

It is strongly recommended that the scientifically based FIRE PROPAGATION
INDEX (FPI) concept, developed at Factory Mutual Research Corporation, be
adopted for the realistic flammability evaluation and screening of FRC
materials for Army applications.
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I
INTRODUCTION

Fiber reinforced composite (FRC) materials are used extensively because of
their favorable physico-chemical properties, including high strength-to-weight
ratio and excellent resistance to ballistic penetration. The use of composites
in Army vehicles as a means of decreasing weight and enhancing survivability,
without reducing personnel safety, has been under study for some time. The
U.S. Army Materials Technology Laboratory (AMTL) has successfully demonstrated
that a ground vehicle turret could be fabricated from FRC materials; since
then, the technology has been applied to the fabrication of a composite vehicle
hull(1), as well as more complex vehicle components.

Although FRC materials are very attractive in terms of their physico-
chemical properties, concern for possible fire hazards is understandable, as
organic polymers are one of the major constituents of the materials
(approximately 30% by weight or 50% by volume). It is, therefore, necessary
that the flammability of FRC materials be determined and compared with that of
other materials. Several FRC materials (MIL # 1 to 5) have already been
investigated(2’3). This report describes results for the flammability
evaluation of three additional glass fiber reinforced epoxy composite
materials listed in Table 1.

TABLE 1
GLASS FIBER REINFORCED EPOXY COMPOSITE MATERIALS TESTED IN THIS STUDY*

Sample Number Designation Manufacturer
MTL #6 CE-321R Epoxy/Glass Ferro Corporation
MTL #7 MXB7701/24 oz. WR, ICI Fiberite

Epoxy/Glass
MTL #8 CYCOM 5920 Cyanamid Company

(also CYCOM XG820)

* Nominal compositions, 70% glass-30% resin. Information supplied by
William Haskell III, Materials Engineer/Plastics, Army Materials
Technology Laboratory, Watertown, MA.




In this study, flammability evaluations were performed using the latect
technology developed at the Factory Mutual Research Corporation (FMRC)(M'a).
The underlying principles of this evaluation are briefly reviewed in the
Appendix. All the experiments were performed in FMRC's 50 kW-Scale
Flammability Apparatus, shown in Figure 1. In this report, data for FRC
materials MTL #1 to 5, examined in the previous study for the Army Materials
Technology Laboratory(2’3), have been included for comparison.
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RESULTS

2.1 IGNITION

Times to piloted ignition at various external heat flux values were
measured for horizontal, 0.009 m? samples. From the square root of the
inverse of time to ignition versus external heat flux, Critical Heat Flux
(CHF) and Thermal Response Parameter (TRP) values were derived(2’3'7). For
materials with higher CHF and TRP values, resistance to ignition and flame
propagation is higner; therefore, larger ignition and external heat sources
are required to assist flame propagation.

CHF and TRP values for MTL Samples #6, 7, and 8 and MTL Samples #1 to 5,
examined previously(2'3), are shown in Figures 2 and 3, respectively. CHF
values for MTL Samples #6, 7 and 8 are lowest and comparable to those for MTL
Samples #1 and 3. The TRP values for the three new samples are comparable to
those for MTL Samples #1, 2 and 4.

Thus FRC MTL Samples #6, 7 and 8 exhibit a low ignition resistance and
should be provided with additional protection.

2.2 GENERATION RATE OF MATERIAL VAPOR PER UNIT EXTERNAL HEAT FLUX

This parameter is used to assess the amount of combustible vapor genera-
tion expected when material burns. The generation rate of material vapor is
also described in terms of heat of gasification (see Appendix). The higher
the value of this parameter, the greater the amount of combustible vapor
generated.

The generation rate of material vapor was determined by exposing 0.009 me
horizontal samples to various external heat flux values and by measuring the

mass loss rate by a load cell in the 50 kW-Scale Flammability Apparatus.




Results for MTL Samples #6, 7 and 8 are shown in Fig. 4. In the figure, data
for the peak values of the generation rate of material vapors are divided by
the external heat flux. Data for MIL Samples #1 to 5, examined in the
previous study(2’3), are also included in the figure.

The value of th~ generation rate parameter is highest for MTL Samples #6,
7 and 8, comparable to MTL #3. These materials are expected to generate lar-
ger amounts of combustible vapors than highly fire resistant FRC materials.
Therefore, these materials, #6, #7 and #8, need a high level of protection.

2.3 GENERATION RATE OF CARBON MONOXIDE PER UNIT OF EXTERNAL HEAT FLUX

This parameter is used to assess the amount of carbon monoxide (CO)
generation expected when a material burns. The higher the value of this
parameter, the greater the amount of CO generated.

The generation rate of CO was measured for 0.009 m® horizontal samples
exposed to various external heat flux values, in the 50 kW-Scale Flammability
Apparatus. The results are shown in Fig. 5, where the generation rate of CO
is divided by the external heat flux. Data for MTL Samples #1 to 5, examined
in the previous study(2’3), have also been included in the figure.

The value of the parameter is highest for the MTL Samples #6, 7 and 8.
These materials are expected to generate larger amounts of CO than highly fire
resistant FRC materials and thus need additional protection.

2.4 MASS OPTICAL DENSITY OF SMOKE

Mass optical density (MOD) is used to assess the amount of smoke
generation and visibility reduction during fires. The higher the value of
MOD, the greater the amount of smoke generated and the greater the reduction
in visibility.

MOD (m2/g) is calculated by multiplying the optical density (m") by the
total volumetric flow cate (m3/s) and dividing by the generation rate of
material vapors (g/s).

In this study, 0.009 m? samples of MTL #6, 7 and 8 were mounted hori-
zontally and exposed to various external heat flux values. Measurements were
made for the optical density and total volumetric flow rate of the product-air
mixture. Large amounts of thick black smoke were generated from these
samples. The MOD values are shown in Fig. 6. MOD values for MTL Samples #1
to 5, determined in the previous study‘2’3), have also been included in the
figure.




In Fig. 5, MOD values for MTL Samples #6, 7 and 8 are high compared to
highly fire resistant FRC materials; thus, fire protection is needed.

2.5 CHEMICAL HEAT RELEASE RATE PER UNIT OF EXTERNAL HEAT FLUX

This parameter is used to predict the amount of heat generated in a fire.
The higher the value of the parameter, the greater the amount of heat
generated. Heat generated in the reactions leading to the formation of CO and
C02 and depletion of oxygen is defined as the chemical heat release rate. The
chemical heat release rate for horizontal 0.009 m2 samples exposed to various
external heat flux values was measured.

Peak values of chemical heat release rate divided by the external heat
flux are shown in Fig. 7 for MTL Samples #6, 7 and 8 and MTL Samples #1 to 5.
The values of the parameter for MTL Samples #6, 7 and 8 samples are again
higher than the values for highly fire resistant FRC materials and thus fire
protection is needed.

2.6 FIRE PROPAGATION

Fire propagation behavior is characterized in terms of Fire Propagation
Index (FPI), expressed as the ratio of the radiative heat release rate (per
unit width to the one-third power) to the TRP. The higher the FPI value, the
higher the fire propagation rate. For materials with FPI values less than 8,
fire propagation beyond the ignition 2zone is unlikely; for materials with FPI
values equal to or greater than 8, fire is expected to propagate beyond the
ignition zone and fire protection is needed.

FPI values for MTL samples #6, 7 and 8 were determined for 0.61 m long and
0.10 m wide vertical sheets in a 40% oxygen environment with the bottom 0.15 m
in the ignition zone (50 kW/m? of external heat flux with a pilot flame). FPI
values were calculated as follows: 1) chemical heat release rate (in kW),
measured during fire propagation, was multiplied by 0.40 to convert it to
radiative heat release rate; 2) radiative heat release rate was divided by the
width of the sheet (in meters); 3) the radiative heat release rate per unit
width was raised to the one-third power, and then divided by the TRP value in
(kw-s1/2/m2); the result was multiplied by 1000. Visual observations of flame
propagation were difficult for these samples, as large amounts of smoke were
generated.




Table 2 and Figure 8 show FPI values for MTL Samples #6, 7 and 8. FPI
values for MTL Samples #1 to 5 have also been included in the figure for
comparison. FPI values for MTL Samples #6, 7 and 8, as well as for MIL
Samples #1 and 3, are greater than or equal to 8. Thus, flame'propagation
beyond the ignition zzne is expected, and passive or active fire protection is
needed. Active fire protection can be provided by Halon for the crew

compartment. Passive fire protection can be provided by surface coating or
lamination with highly fire resistant FRC material such as the fiberglass
phenolic examined in the previous study.

TABLE 2

FIRE PROPAGATION INDEX VALUES FOR FIBER REINFORCED
COMPOSITE MATERIALS*

MTL # Sample Thickness (mm) Peak FPI Value
1 4.8 13.3
3 4.8 9.7
y 4.8 7.8
5 3.2 3.2
6 4.4 8.8
7 4.8 11.3
8 4.y 9.8

* For 0.61 m long 0.10 m wide vertical sheets inza 40% oxygen
environment. Bottom 0.15 m exposed to 50 kW/m“ of external
heat flux in the presence of a pilot flame.

2.7 FLAME EXTINCTION BY HALON 1301

Flame extinction by Halon 1301 was determined for 0.009 m? horizontal
samples of MTL Samples #6, 7 and 8 exposed to an external heat flux value of
60 kw/mz, under coflow conditions. Halon 1301 was added to the air flow.

Figure 9 shows the volume percent of Halon 1301 required for flame
extinction for MTL samples #6, 7 and 8 along with values for MTL samples #1 to
5. The data show that flame extinction occurs well within 4% by volume of
Halon 1301. This range is consistent with the design of the current suppres-

sion system for the crew compartments of Army combat vehicles.
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CONCLUSION

The following can be concluded for MTL Samples #6, 7 and 8:

1)

2)

3)

L)

5)

The samples have low ignition resistance in comparison to highly fire
resistant FRC materials; thus, fire protection is needed;

The samples generate large amounts of combustible vapors, carbon
monoxide, smoke and heat compared to highly fire resistant FRC
materials; thus, fire protection is needed;

Flame is expected to propagate beyond the ignition zone; thus, fire
protection is needed;

Flame extinction by Halon 1301 occurs within 4% by volume. This range
is consistent with the design of the current suppression systems for
the crew compartment;

Both active and passive fire protection are needed. Active fire
protection can be provided by Halon. Passive fire protection can be
provided by surface coating or lamination with highly fire resistant
FRC material such as the fiberglass phenolic examined in the previous
study.

v
RECOMMENDATION

It is strongly recommended that the Fire Propagation Index (FPI) concept

be adopted for the realistic flammability evaluation of FRC materials for Army
vehicles.




REFERENCES

Sullivan, F.R., "Reinforced Plastic Turret for M2/M3", Technical Report
TR 87-39, Prepared by FMC Corporation, San Jose, CA, Under Contract No.
DAAGY46-83-C0-0041 for the Army Materials Technology Laboratory,
Watertown, MA, August, 1987.

Tewarson, A., "Flammability Characteristics of Fiber Reinforced Composite
Materials" Final Report Prepared by Factory Mutual Research Corporation,
Norwood, MA, Under Contract No. DAALO4-87-C-0078, MTL TR 90-41, for

US Army Laboratory Command, Materials Technology Laboratory, Watertown,
MA, August 1990.

Macaione, D.P., and Tewarson, A., "Flammability Characteristics of Fiber-
Reinforced Composite Materials", Chapter 32, pp. 542-565 in Fire and

Polymers Hazards Identification and Prevention, G.L. Nelson (Editor). ACS
Symposium Series 425, American Chemical Society, Washington, D.C. (1990).

Tewarson, A., Lee, J.L., and Pion, R.F. "The Influence of Oxygen
Concentration on Fuel Parameters for Fire Modeling", Eighteenth Symposium
(International) on Combustion, The Combustion Institute, Pittsburgh, PA
1981, pp. 563-570.

Tewarson, A., and Khan, M.M. "Flame Propagation for Polymers in
Cylindrical Configuration and Vertical Orientation" Twenty-Second
Symposium (International} on Combustion, The Combustion Institute,
Pittsburgh, PA, 1988, pp. 1231-1240.

Tewarson, A., and Khan, M.M., "Electrical Cables-Evaluation of Fire
Propagation Behavior and Development of Small-Scale Test Protocol",
Factory Mutual Research Corporation, Norwood, MA 02062. Technical Report
J.I. OM2E1.RC (January 1989).

Tewarson, A., and Ogden, S.D., "Fire Behavior of Polymethylmethacrylate",
paper submitted to Combustion and Flame.

Tewarson, A. "Generation of Heat and Chemical Compounds in Fires", in The
SFPE Handbook of Fire Protection Engineering (P.J. DiNenno, Ed.),
National Fire Protection Association Press, Quincy, MA, 1988, Section 1,
Chapter 13, pp. 1-179 to 1-199.




APPEMDIX

IGNITION

Ignition experiments are performed to measure time to 1gn1t10n ty igr @88 a
function of external heat flux, qe For thermally thick materials, the
following linear relationship is satisfied(7):

e N A W (1)

where t; ig is in seconds and q e is in kW/m® and K = (Kpc )1/2 (Tlg Tsp)y is
designated as the THERMAL RESPONSE PARAMETER (TRP) for the solid (kW-s'/2/m2);
D is the specific heat (kJ/kg-K);

p is the density (kg/m3); T¢ is the flame temperature (K); T

k is the thermal conductivity (kW/m-K); ¢
ig is the ignition
temperature (K); Tge is the initial surface temperature (K).

GENERATION RATE OF MATERIAL VAPORS PER UNIT OF EXTERNAL HEAT FLUX
The following relationship is found between the mass loss rate (6") and
external heat flux (é;)(7):

o oM 1] N
m = (qe + Qg - qrr)/AHg (2)

2)’ -

Q. is the surface

where m" is in g/mz—s, d; is the flame heat flux (kW/m

reradiation loss (kW/mz), and AH8 (kd/g) is the gasification,(7):
Tv
AH = c_ dT oH
g£p+v (3)

where aH, is the heat of vaporization (kJ/g) and T, is the vaporization
temperature (K).

LR i) o
For Qe >> 9 - Qpps
el ot
m/qg = 1/AHg (u4)

GENERATION RATE OF CARBON MONOXIDE PER UNIT OF EXTERNAL HEAT FLUX
The generation rate of carbon monoxide (CO) per unit external heat flux
(q;) can be expressed as:




N "

Mon
Cco’% = Yoo ™ /9

where y is the yield of CO (g/g).

o Nt ot -
For Qe >> Qp - Qpps
st N
Yool /9¢ = Yoof tHg

MASS OPTICAL DENSITY

Mass Optical Density (MOD) is expressed as:

MOD = logqo(Iy/I)V/mL

(5)

(6)

(7)

where 1/1, is the fraction of light transmitted through smoke, V is the total

volumetric flow rate of smoke (m3/s), m is the mass loss rate (g/s) and L is

the optical path length (m).

HEAT RELEASE RATE PER UNIT OF EXTERNAL HEAT FLUX

Heat release rate in fire is defined as the chemical heat release rate

(éch) and has a convective and a radiative component. 1t is determined from

the generation rates of CO and CO,:

. * . *
Qn = AHco2 Gco2 + AlHg,
AH* AH../¥

co, Hp co,

#
AHCO = (AH,I.-AHCO\YCO)/\I’CO

Geo

(8)

(9)

(10)

where éch is in kW and éCO and CC02 are the generation rates of CO and CO,

respectively (g/s), 8Hpg  is the heat of combustion per unit mass of €O,

generated (kJ/g), AHEO is the heat of combustion per unit mass of CO generated

(kJ/g), BHp is the net heat of complete combustion (kJ/g), and Yoo and Yp

are the maximum possible theoretical yields of CO and CO,, respectively (g/8).




FIRE PROPAGATION

Fire Propagation is the movement of a flame across the surface of a
material, as it is fed by the vapors of the pyrolyzing material. Flame spread
governs fire hazards and protection requirements and thus is one of the most
important measurements. The rate of movement of the pyrolysis front on the
surface is defined by the fire propagation rate:

S = dxp/dt (11)

where S is the flame spread rate (mm/s or m/s) and X
(mm or m).

p is the pyrolysis height
The flame spread process is divided into three categories: 1)
accelerating, where S is a direct function of time; 2) non-accelerating, where
S is independent of time; and 3) decelerating or non-propagating, where S
decreases with time or the flame spread is limited to the ignition 2zone. For

thermally thick materials with concurrent air flow, S is expressed as(5’6):

sV2 - (apal/?k (12)

where d; is the maximum flame heat flux at the pyrolysis front per unit

surface area (kW/mz) and (é;)A1/2 is expressed as (xradéch/d)1/3’ where x..4
is the radiative fraction of the combustion efficiency, Q,, is the chemical
heat release rate (kW), d is the width of the sheet (m) and K is defined in

Eq. (1). Substitution of these quantities in Eq. (10) and multiplied by 1000,
defines the FIRE PROPAGATION INDEX (FPI):

FPI = R /d)"3/<.<pcp)s”2(T )} x 1000 (13)

ig'Tsf

[(xrad chem
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Figure 1. 50 kW-Scale Flammability Apparatus.
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Samples are Taken from Reference 1.
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Figure 8. Fire Propagation Index for FRC Materials Measured in the Factory Mutual Research

Corporation's 50 kW-Scale Flammability Apparatus. Data for MTL # 1 to 5 Samples are Taken from

Reference 1.
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Figure 9. Halon 1301 Concentration in Volume Percent for Flame Extinction Fire for FRC Materials,
Exposed to 60 kW/m? of External Heat Flux, Measured in the Factory Mutual Research Corporation's
50 kW-Scale Flammability Apparatus. Data for MTL # 1 to 5 Samples are Taken from Reference 1.
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